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Quantum computing with controlled-NOT
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We describe simple quantum networks which allow us to prepare, manipulate and
measure quantum entanglement of few qubits.

1. Introduction

The phenomenon of quantum entanglement, a remarkable feature of quantum theory,
was first noticed by Schrödinger (1935) and since then it has baffled generations of
physicists. About a decade ago, Deutsch (1985) showed how quantum entanglement
in principle allows new types of information processing and thus introduced the
concepts of quantum computation and quantum networks. All known methods of
quantum computation are applications of entanglement.

Recent progress in quantum complexity theory indicates that the computational
power of quantum computers exceeds that of Turing machines, hence the experimen-
tal realization of such processes is a most interesting issue (Shor 1994; Ekert & Jozsa
1996). Unfortunately, at the present time it is not clear whether it will be practicable
to build physical devices which can perform coherent quantum computations. This
notwithstanding, the theoretical study of quantum physics from the point of view of
computational complexity may at least be expected to shed new light on the foun-
dations of quantum theory. On the experimental side, the current challenge is not to
build a full quantum computer right away but rather to move from the experiments
in which we merely observe quantum interference and entanglement to experiments
in which we can control these quantum phenomena.

In this paper we describe how, with simple quantum logic gates and a handful
of qubits, we can control and manipulate quantum entanglement. Here, and in the
following, a qubit means a generic two-state quantum system with a chosen ‘com-
putational basis’ {|0〉, |1〉} (e.g. two-level atom, spin- 1

2 particle, etc.) and a quantum
logic gate is an elementary device which performs a fixed unitary operation on select-
ed qubits in a fixed period of time (Barenco et al. 1995b). Single-qubit quantum logic
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Figure 1. Graphical representations of H and the quantum controlled-NOT gates. Here, a+ b
denotes addition modulo 2.

gates are rather trivial and can be implemented, for example, by exciting selected
atomic transitions with laser pulses of controllable frequency, intensity and duration.

We will frequently use a simple gate H which prepares equally weighted superpo-
sitions of the two basis states |0〉 and |1〉:

|0〉 → (1/
√

2)(|0〉+ |1〉), (1.1)

|1〉 → (1/
√

2)(|0〉 − |1〉). (1.2)

Non-trivial quantum logic gates, operating on two or more qubits, require a con-
ditional quantum dynamics, in which one subsystem undergoes a coherent evolution
that depends on the quantum state of another subsystem. The unitary evolution
operator for the combined system has the form

U = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1 + · · ·+ |k〉〈k| ⊗ Uk, (1.3)

where the projectors refer to quantum states of the control subsystem and the unitary
operations Ui are performed on the target subsystem. The conditional dynamics
are much more difficult to implement; however, first experimental steps towards
implementation of quantum control gates have already been reported.

The simplest non-trivial operation of this sort is the quantum controlled-NOT, a
gate operating on two qubits, for which U0 = 1 and U1 = |0〉〈1| + |1〉〈0|. In the
computational basis, the value of the target qubit is negated iff the control qubit
has logical value 1, the logical value of the control qubit does not change. This is
described in the following equations, in which the first ket represents the control bit
and the second ket represents the target bit:

|0〉|0〉 → |0〉|0〉, (1.4)

|0〉|1〉 → |0〉|1〉, (1.5)

|1〉|0〉 → |1〉|1〉, (1.6)

|1〉|1〉 → |1〉|0〉. (1.7)

It is very convenient to use graphical representations of quantum logic gates. Fig-
ure 1 shows diagrams of a single-qubit gate H, also known as the Hadamard gate,
and the quantum controlled-NOT.

The quantum controlled-NOT gate has a variety of interesting properties and
applications and in the following we will describe some of them.

2. Quantum measurements

The quantum controlled-NOT gate transforms superpositions into entanglements

(α|0〉+ β|1〉)|0〉 ↔ α|0〉|0〉+ β|1〉|1〉. (2.1)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Quantum computation 2261

|a

|0

|0

|a

|a

(a) (b)

Figure 2. (a) Quantum controlled-NOT effecting a quantum ‘non-demolition’ measurement.
(b) Quantum ‘non-demolition’ projection on two orthogonal subspaces spanned by {|01〉, |10〉}
and {|00〉, |11〉}.
Thus it acts as a measurement gate because if the target qubit is initially in state
|0〉, then this qubit, together with the gate, amount to an apparatus that performs
a perfectly accurate non-perturbing (quantum non-demolition) measurement (von
Neumann 1932; Braginsky et al. 1977) of an observable pertaining to the control
qubit whose eigenvectors coincide with |0〉 and |1〉. Clearly, any other single-qubit
observable with eigenvectors |u〉 and |v〉 can be measured in the same way by applying
to the control qubit a compensating single-qubit operation which maps |u〉 → |0〉 and
|v〉 → |1〉, followed by the controlled-NOT.

For two or more qubits, networks composed of the controlled-NOT gates can effect
‘quantum non-demolition’ projections on selected subspaces. Consider, for example,
the four-dimensional Hilbert space of two qubits spanned by the four basis vec-
tors {|00〉, |01〉, |10〉, |11〉} and a projection on the subspace spanned by the vectors
{|01〉, |10〉}. The projection can be ‘constructed’ out of two controlled-NOT gates as
shown in figure 2b, followed by the measurement performed on the third, auxiliary,
qubit which acts as a probe.

Much more interesting projections are those which involve projecting on entan-
gled states. Networks of the quantum controlled-NOT gates can both prepare highly
entangled quantum states and project on them by applying the same controlled-NOT
operations but in reversed order. For example, the network shown in figure 3a pre-
pares two qubits in one of the four maximally entangled Bell states and the reversed
quantum network can be used to implement the so-called Bell measurement (Barenco
et al. 1995a) on the two qubits by disentangling the Bell states

|0〉|0〉 → (1/
√

2)(|0〉|0〉+ |1〉|1〉), (2.2)
|1〉|0〉 → (1/

√
2)(|0〉|0〉 − |1〉|1〉), (2.3)

|0〉|1〉 → (1/
√

2)(|0〉|1〉+ |1〉|0〉), (2.4)
|1〉|1〉 → (1/

√
2)(|0〉|1〉 − |1〉|0〉). (2.5)

In this way, the Bell measurement is reduced to two single-particle measurements.
The method can be easily extended to a three-qubit case. Figure 3b shows how to
prepare eight maximally entangled three-particle states, known as the Greenberger–
Horne–Zeilinger (GHZ) states (Greenberger et al. 1989, 1990; see also Mermin 1990).
Reversing the preparation procedure we obtain the unitary transformation which
reduces the GHZ measurement to the three single-particle measurements.

We can write this in the following compact form, where a and b can each take the
values 0 and 1 and ā and b̄ denote NOT-a and NOT-b, respectively:

|0〉|a〉|b〉 ↔ (1/
√

2)(|0〉|a〉|b〉+ |1〉|ā〉|b̄〉), (2.6)
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Figure 3. (a) The Bell measurement: the gates on the left-hand side allow us to generate the four
Bell states from the four possible different inputs. Reversing the order of the gates (right-hand
side of the diagram) corresponds to a Bell measurement. (b) GHZ measurement: the same as in
(a) for the eight GHZ states.

|1〉|a〉|b〉 ↔ (1/
√

2)(|0〉|a〉|b〉 − |1〉|ā〉|b̄〉). (2.7)

Let us also mention that the GHZ measurement provides an interesting possibility
of labeling the GHZ states via the corresponding binary output. The three output
bits then have the following meanings.

(i) The first output bit tells us whether the number of |0′〉s in the GHZ state,
written in the conjugate basis (this is given by |0′〉 = (1/

√
2)(|0〉 + |1〉) and |1′〉 =

(1/
√

2)(|0〉−|1〉)), is even or odd. If the first output bit is |0〉, there is an odd number
of |0′〉s in the conjugate basis, otherwise an even number.

(ii) The second output bit indicates whether the first two bits in the GHZ super-
position are the same or different. If the second output bit is |0〉, they are the same.

(iii) The third output bit provides the same information with respect to the first
and third bit of the GHZ superposition.

We hope to elaborate on this in a forthcoming paper.
The Bell measurement is essential for quantum dense coding (Bennett & Wiesner

1992) and for quantum teleportation (Bennett et al. 1993); the GHZ measurement
allows to generalize the two- to the three-particle case. In general, ‘any measurement
on any number of qubits can be implemented using only single-qubit operations and
the quantum controlled-NOT gates’.

This follows from the fact that the quantum controlled-NOT gate, together with
relatively trivial single-qubit operations, forms an adequate set of quantum gates, i.e.
the set from which any unitary operation may be built (Barenco et al. 1995b). Thus
if we want to measure observable A pertaining to n qubits, we construct a compen-
sating unitary transformation U which maps 2n states of the form |a1〉|a2〉 . . . |an〉,
where ai = 0, 1, into the eigenstates of A. This allows both to prepare the eigenstates
of A, which in general can be highly entangled, and to reduce the measurement
described by A to n simple, single-qubit measurements. (Note: the statement is also
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Figure 4. C-NOT simulating decoherence and destroying single-particle interference. The com-
bined effect of a continuous rotation of the second qubit followed by an ideal C-NOT operation
is equivalent to the incomplete C-NOT gate analysed in the text.

true for non-orthogonal, POVM measurements because all non-orthogonal measure-
ments are implemented as regular, von Neumann-type measurements on extended
systems (Peres 1993).)

At this stage one may get the impression that the quantum controlled-NOT gate
is a very special gate. It is not. In fact, almost any non-trivial gate operating on two
qubits is universal (Deutsch et al. 1995; see also Lloyd 1995).

3. Manipulation of quantum entanglement

Quantum entanglement can be held responsible for destroying single-particle inter-
ference. Consider, for example, the network shown in figure 4.

Here, we first prepare the control qubit in a superposition of |0〉 and |1〉 and then
we entangle it with the target qubit via the controlled-NOT gate. Let us assume
that the controlled-NOT gate does not completely flop the target qubit, i.e. instead
of |0〉 → |1〉 and |1〉 → |0〉, it performs

|0〉 → α|0〉+ β|1〉, |1〉 → β|0〉 − α|1〉, (3.1)

where α and β are taken to be real. Here, β parametrizes the degree of entanglement:
β = 1, α = 0 corresponds to the controlled-NOT gate, i.e. complete entanglement.
(Performing a continuous rotation on the second qubit before a perfect controlled-
NOT gate leads to a result which is equivalent to this ‘incomplete’ controlled-NOT
gate.)

Thus the state at the output of the network can be written as
1
2 [((1 + αeiφ)|0〉+ (1− αeiφ)|1〉)|0〉+ βeiφ(|0〉 − |1〉)|1〉]. (3.2)

The probability of observing 0 or 1 on the control qubit at the output oscillates
with φ, e.g. if α is chosen to be real, then

P0(φ) = 1
2(1 + α cosφ). (3.3)

The single-particle interference pattern is washed out by an increasing entangle-
ment with the auxiliary qubit. The reduced density operator of the control qubit
right before the second gate H is given by 1

2(|0〉〈0|+ |1〉〈1|+αe−iφ|0〉〈1|+αeiφ|1〉〈0|).
The entanglement with the auxiliary qubit can be quantified by 1− |α|2. When the
entanglement increases, i.e. |α| decreases, so does the modulus of the off-diagonal
elements which effectively leads to decoherence of the control qubit. This simple
network can be viewed either as simulating decoherence of the control qubit by a
tunable entanglement with the target qubit, or as an illustration of the trade-off
between the single-particle interference and the two-particle interference due to the
entanglement, or as an illustration of the back-action of the measuring apparatus
which performs the ‘QND’ measurement of the bit values but messes up the phase,
and this is why the single-particle interference disappears.
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Figure 5. Testing Bell’s inequalities with a tunable source of entanglement. The measurements
are supposed to be instantaneous which ensures the spacelike separation of detection events.
Figure 6. Transferring quantum entanglement from A and B to A and C.

In addition, the fact that we can have a ‘tunable’ source of correlated particles
offers an interesting possibility for new tests of the Bell inequality (Bell 1964).

For that, the previous arrangement has to be modified to the one sketched in
figure 5, where the additional rotations play the role of the polarization analysers
in conventional tests (Selleri 1988; Mandel 1995). Using state-selective detectors,
such a set-up may allow us to test the CHSH form of the Bell inequality (Clauser
et al. 1969). Note that as the degree of correlation is tunable, ranging from totally
uncorrelated to maximally entangled particles, it would be possible to monitor the
transition between the classically allowed and the non-local quantum correlation
domain.

Quantum entanglement can be regarded as a precious resource, e.g. for secure
communication and for computation, so it is important to be able to transfer it from
one pair of qubits to another and to regenerate it if necessary.

Suppose we have three qubits A, B, and C; A and B are entangled and C is in some
quantum state of its own, not necessarily pure, but we assume that C is entangled
neither with A nor with B. If we cascade three quantum controlled-NOT gates and
apply them to qubits B and C so that the first gate takes qubit B as the control and
qubit C as the target, the second gate takes C as the control and B as the target,
and the third gate repeats the action of the first gate, then we effectively transfer
the entanglement from A and B to A and C, and qubit B acquires the initial state of
C. We have thus swapped the qubits B and C. The corresponding network is shown
in figure 6 (see Barenco et al. (1995a) for state transfer and Zukowski et al. (1993)
for entanglement swapping).

While transferring quantum entanglement between qubits, we may want to
improve the degree of entanglement of one partially entangled pair of qubits by
transferring some entanglement from another partially entangled pair of qubits. If
pair A and B contains more quantum entanglement than pair C and D, then in order
to boost the entanglement of C and D we can just swap the entanglement between
the pairs by extending the transfer procedure described above; we simply apply the
three cascaded controlled-NOT gates to qubits A and C, and to B and D. But what
if qubits A and B contain not more entanglement than C and D? It turns out that
in some cases one can still improve the entanglement of C and D by adopting the
entanglement purification (Bennett et al. 1993) or the quantum privacy amplification
procedure (Deutsch et al. 1996).

Maximally entangled states have several interesting invariant properties under
single qubit unitary operations. Some of them are now being studied in connection
with the new, rapidly developing area of quantum error correction (Shor 1995; Ekert
& Macchiavello 1996; Steane 1996).
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4. Concluding remarks

In this paper we have described several quantum measurements and entanglement
manipulations in terms of quantum networks. This ‘higher-level description’ is very
useful—it allows us to view more complex experiments as networks of quantum logic
gates. Such a ‘reductionist’ approach also helps to design new experiments.

While discussing what can be achieved with two or three qubits and few quantum
controlled-NOT gates, we have generalized the Bell measurement to three or more
qubits (e.g. the GHZ measurement) and we have suggested a simple transfer of
quantum entanglement between three qubits.

We hope that the entanglement manipulation of this kind will soon become a
standard experimental technique and will lead to implementing more sophisticated
quantum data processing.
This work was supported in part by the European TMR Research Network ERP-4061PL95-1412,
Hewlett-Packard, Elsag–Bailey and The Royal Society, London. S.F.H. acknowledges support
from DGICYT project no. PB-95-0594 (Spain).
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